
JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 1

By Mark Lassoff, Founder Framework Television

Section Seven
Expect this section to step up the complexity
considerably. We’re moving in to an area that’s
more ethereal. Move slowly through the material
and review until you understand it. Understanding
classes and objects is foundational and really
undergirds your success in learning to program.

Most of all: Don’t give up. Don’t let complexity and
the work needed to understand it be the reason you
don’t succeed! I promise that you can do this if you
spend the time.

-Mark

We’re going to make your world more object oriented.

Object oriented programming came in to favor in the
nineties because it provided a systemic way to deal
with complex problems that had to be translated in
to code. It is, fundamentally, a way of looking at the
world that breaks real-world items in to their core
properties and actions.

In this section we’ll be creating Objects a couple of
different ways. First we’ll create an object directly.
We’ll create its properties and initialize them. We’ll
add it’s methods and use them. However the true
power of Object Oriented programming will come
with our second example—where we’ll create a
Class, which is a blueprint for an object. We’ll then
instantiate multiple instances of that class.

JavaScript for App Development

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 2

Imagine you were tasked with creating a card game.
Could you think of anything within the game that
could be represented as a class? Perhaps:

• �a Card?
• �a Hand?
• �a Player?

Each of these items could easily be thought of as
a Class. A player for example would have a name,
bank, and, perhaps and avatar. The value of these
properties would differ, but the properties themselves
would remain the same.

A card would have a suit and a value. Again,
each card would have a different suit and value
combination, however, each card would have the
suite and value properties.

As with anything, the abstract ideas of classes and
objects will better crystalize as you work with them.
Let’s go!

Section 7 Goals
In this section of the course your goals are:

🔲 Understand the Design of a Class
🔲 Create a Simple Class
🔲 Create a Class Prototype
🔲 Create Object Instances from That Class

Watch This: Section 7 Video
As always your course videos are available on
YouTube, Roku and other locations. However, only
those officially enrolled have access to this course

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 3

guide, are able to submit assignments, work with the
instructor, and get this guide.

Watch this section video at: https://www.youtube.
com/watch?v=qxtMtud3f50

Understanding the
Design of a Class
Good class design encompasses all of the
necessary properties to describe the class and all
of the necessary methods to model behavior. The
process of boiling a something down to a class with
properties and methods is known as abstraction.

Let’s take a bank account and through the process
of abstraction boil it down to it’s properties and
methods:

Bank Account

Properties:
Account Number
Balance
Account Type
Opening Date
Account Status

Methods:
Open Account
Close Account
Credit
Debit

Of course, my abstraction is a slightly simplified
version of the real world. Every abstraction is, but,
you can see here how with this object we could write
could to model an actual bank account.

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 4

Do This: Create a Model
Using the bank account example above as a guide,
create a class to model a real estate listing. Make
it comprehensive. Remember we do not want to
include VALUES, just the properties and the methods
similar to how the bank account was modeled. We
know there will be a balance—but we don’t know
what the balance is.

If you are not particularly familiar with the real
estate world, visit a site like Zillow and look some
listings so you can create your class.

Once you’ve created your class share your properties
and methods using the format above with others in
the course via Slack. Note how similar or different
your version is from others that are posted.

Creating a Simple Object
So let’s take this idea of a class and translate it in
to code. This first version of a class we’re looking at
defines the class and object at the same time. While
this has limited utility, it does allow use to create and
use and single version of an object.

<div id=”output”></div>
<script>
 var car = {};
 //Properties
 car.type = “Sedan”;
 car.make = “Honda”;
 car.model = “Civic”;
 car.year = 2015;
 car.weight = 3000;

 //Method

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 5

 car.startCar = function()
 {
 alert(“Car is started”);
 }

 car.stopCar = function()
 {
 alert(“Car is stopped”);
 }

 var out = “Car Type: “ + car.type;
 out += “
Car Make: “ + car.make;
 out += “
Year: “ + car.year;

 car.startCar();
 car.stopCar();

 document.getElementById(‘output’).innerHTML = out;
 </script>

The code above creates a car object. The car is
described in terms of its properties type, make,
model, year, and weight. In this case you’ll notice
that these properties are immediately populated with
values. Properties use the common dot notation.

It might be helpful to think of properties as
adjectives- the elements that describe the class in
your model.

This class also has some methods which are
behaviors modeled in the class. In this model
(simply) modeled are starting the car and stopping
the car with the startCar() and stopCar()
methods.

Remember, in this first example we are creating the
class and object at the same time, so, right after the
methods are defined we can start using the class.

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 6

The properties are access for output, again, using the
dot notation. The methods are also run using the dot
notation.

Do This: Create Your First Class
Using the class outline you created previously for a
real estate listing (and any feedback you received
over Slack), create the class using the code above as
a guide. You should be able to establish and output
the value of the properties and create and use at
least one method related to the listing.

Create a Class Prototype
Now let’s create a class that is just a blue print for
objects. You’ll notice there are no values assigned
to the properties here. The syntax is a bit different
because this time we’re creating a model or
prototype for the class.

As a standard Class Prototypes are created in their
own separate files saved as a Javascript file. The file
below should optimally have the filename Car.js.

It then needs to be included in any file that uses it
like this: <script src=”Car.js”>/script>

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 7

Examine the code below.

var Car = function(type, make, model, year){
 //Properties
 this.type = type;
 this.make = make;
 this.model = model;
 this.year = year;
 this.speed = 0;

 //Methods
 Car.prototype.accelerate= function()
 {
 if(this.speed < 100){
 this.speed += 10;
 console.log(“Speed is now: “ + this.speed);
 } else
 {
 console.log(“Top speed reached”);
 }
 },

 Car.prototype.brake = function()
 {
 if(this.speed > 10)
 {
 this.speed -= 10;
 console.log(“Speed is now: “ + this.speed);
 } else
 {
 this.speed = 0;
 console.log(“Speed is now: “ + this.speed);

 }
 }

}

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 8

The code begins with a constructor function that is
fired every time an object of this class type is made.

The initial values for all of the properties are set.
These values are either passed in when the object is
created, or, initialized here.

var Car = function(type, make, model, year){
 //Properties
 this.type = type;
 this.make = make;
 this.model = model;
 this.year = year;
 this.speed = 0;

You’ll also notice repeated use of the keyword
this. Meant to be self-reflective, this refers to
the instance created. We are essentially creating
properties that live in the instances created, not in
the class itself.

To create an instance of this class you’d use
something like:

var redCar = new Car(“sedan”, “Ford”, “Tauras”, “2010”);

The instance created, redCar now has all of the
properties and methods of the Car model. If you
accessed the value of redCar.year the value would
be 2010.

The methods, created with the prototype keyword,
allow the car to accelerate and brake. Note that the
speed is tracked by a variable internal to the class
called speed and is access in the object created
from the model above as redCar.speed .

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 9

Create and use
Class Instance
The code above creates a model for the object, but
not the object itself. It is, again, simply a blue print to
make Car objects in JavaScript.

We would actually create the objects using the code
below:

<script src=”model.js”></script>
<script>
 //Create object or instance
 var myHonda = new Car(“Sedan”,”Honda”, “Civic”, 2017)
 var myLexus = new Car(“Sedan”, “Lexus”, “330”, 2015);
 alert(myHonda.model);
 myHonda.accelerate();
 myHonda.accelerate();
 myHonda.accelerate();
 myHonda.accelerate();
 myHonda.brake();

 alert(myLexus.model);
 myLexus.accelerate();
 alert(myLexus.make + “ going “ + myLexus.speed + “ MPH.”);
</script>

We actually create two distinct objects in this
example: myHonda and myLexus. Each of the
objects created is distinct and carries unique
property values. The objects are then “exercises”
by implementing the methods accelerate() and
brake().

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 10

Do This: Debugging
Assume the correct instantiation for this would be:

var sheep = new Animal(“mammel”, 124, “White”, true, 42);

This code isn’t working.

Filename: Animal.js

var Animal = function(type, weight, color, fur, length){
 //Properties
 this.type = type;
 this.weight = weight;
 this.color = color;
 this.fur = fur;
 this.length = length;
 this.soundItMakes = soundItMakes;

 //Methods
 animal.Prototype.makeSound= function makeSound()
 {
 alert(this.soundItMakes);
 },

 Animal.Prototype.breathe = function()
 {
 alert(this.type + “ is “ + breathing);
 }

}

To test your corrections, you’ll have to create a
file that includes this script (Animal.js) and then
creates an instance of Animal, and implements the
makeSound() and breathe() functions.

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 11

Submit This: Lab Exercise
Assume we include the following properties and
methods in a prototype of a game player:

Properties:
name (String)
livesLeft (integer)
score (integer)
speed (integer)
gridLocationX (integer)
gridLocationY (integer)

Methods:
die()
moveLeft()
moveRight()
moveUp()
moveDown()

Imagine the game is played on 10 x 10 grid, where
the upper left hand corner is position (0,0) and the
bottom right is position (9,9). The player Starts at 0,0.
moveRight() would move the player to (1,0). From
the initial starting point `moveDown()) would move
the player to (0,1).

The player should not be able to fall off the board.

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 12

Knowing what you know create a model for a Player
using the properties and methods above. Implement
the methods according to the rules in the discussion.

A couple of hints:

• �When you initialize the Player in the constructor
gridLocationX and gridLocationY should be
initialized to 0.

• �X is left to right. Y is up and down.
• �So when creating the moveUp() method

you want to include the following: if
(this.gridLocationY > 0) { this.
GridLocationY =- 1 }; meaning we can’t
have a gridLocationY of less than zero.

• �Solve one problem at a time to avoid overwhelm.

Your only deliverable is the model file which should
be named Player.js.

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 13

As mentioned at the beginning, this represents a
significant increase in sophistication from previous
labs. Expect to struggle with this lab and request help
from other members and your instructional team in
the class community.

There will be a solution set circulated for this problem.

Good luck!

Please save your file in the following format to insure
proper credit:

LastName_Exercise7.

Remember every exercise must be submitted in order
for you to earn certification. Once you’ve completed
this exercise, you’re ready to move on to Section 8.

