
JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 1

By Mark Lassoff, Founder Framework Television

Section Five
Loops.

Loops allow us to repeat a section of code again and
again until some predetermined condition is met.
Many of the procedures we execute when coding
include loops. Imagine simulating dealing a deck of
cards, or bowling or even driving a car.

To some degree, all of these processes have loops.

In this section you’ll learn the basics of creating
loops with the JavaScript language. We’ll cover the
three fundamental loop types in JavaScript: While
Loops, Do…While Loops and For Loops.

Section 5 Goals
In this section of the course your goals are:

🔲 Understand How to Construct a While Loop
🔲 Create a Do…While Loop
🔲 �Understand the important fundamental difference

between While loops and Do…While Loops
🔲 Use the compact For Loop

Watch This: Section 5 Video
As always your course videos are available on
YouTube, Roku and other locations. However, only
those officially enrolled have access to this course

JavaScript for App Development

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 2

guide, are able to submit assignments, work with the
instructor, and get this guide.

Watch this section video at: https://www.youtube.
com/watch?v=8KoitM375vY

Creating the Fundamental
While Loop
The while loop continues to execute a block of code
while some condition is true. In the most generic
form the loop looks like this:

while(true)
{
	 ...Do this stuff

}

In the parenthesis after the while statement goes a
continuation condition that the statement evaluates,
such as x <100. While x is less than 100 the loop
will continue to iterate.

Let’s take a look at a fully coded while loop.

<div id=”output”></div>
<script>
 var x = 0;
 var out = “”;
 while(x < 11)
 {
 out += x;
 out += “
”;
 x++;
 }
 document.getElementById(‘output’).innerHTML = out;
</script>

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 3

Before we enter the loop, we create two variables.
Variable x will be used as the loop counter. Variable
out will hold the output. Notice that x is initialized
before the while statement.

The loop continues to iterate while x < 11 is true.
First time through the loop x (which contains a value
of 0) is added to the output. Next, a break is added
to the output. Then x is incremented by one before
the loop is run again. On the second trip through the
loop, the value of x is 1. 1 is also less than eleven so
the loop continues.

Do This
The best way to learn loops is to create them. Create
loops that do the following:

1.	 Create a loop that starts counting at 100 and
counts down to 0, displaying each number.

2.	 Create a loop that counts to 0 to 1000, counting
by 10’s and display each number. Your output
should look something like this:
10
20
30
40
…

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 4

The Do…While Loop
The do...while loop is the while loop turned
upside down. It is functionally the same as the
while loop. It’s structure does lend it self to one
major difference in application (more on this in a bit.)

The do…while loop is structured to have the
continuation condition at the end of the loop. Let’s
look at the generic structure of a do...while loop.

do
{
	
	 ... all this stuff

} while (true)

Again in the do...while loop the loop will continue
iterating while the continuation condition is true.

You might wonder why we have these two
relatively similar structures: the while loop and
the do...while loop. This is what you need to
remember: Use the do...while loop when you need
to guarantee that the loop will iterate at least once
even if the the continuation condition is not initially
true.

If you use the while loop, the loop will not iterate if
the initial condition is found to be false.

With that understood, let’s take a look at a full coded
do...while loop.

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 5

<h2>Numbers divisible by 3...</h2>
<div id=”output”></div>

<script>
var x = 100;
do
{
 if(x % 3 ==0)
 {
 document.getElementById(‘output’).innerHTML += “ “ + x;
 }
 x--;
}while(x>0);

</script>

Trace the execution of this script carefully. When we
start the script the value of x is 100. Inside the loop
we determine if the value of x is evenly divisible by
three. If it is we append that value to the output. Then
we reduce x by one using the decrement operator.

After the decrement, we run our test and determine if
x is greater than zero. Once x reaches zero, we’ll exit
the do...while loop. If you have keyed in the loop
above correctly, the output should look something
like this:

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 6

Do This: Modify the Loops
Change the do...while loop above and make the
continuation condition initially false. (For example
if initially x = -1 then the test x > 0 will fail.) Run
the loop. What happens? Do you understand why?
Change the initial value of x to 99. What happens
now? Would this be different with a while loop? How
and why?

The For Loops
(My Favorite!)
The for loops is the one I use most frequently.
The for loops is essentially a loop shorthand that
combines all of the components of a loop into a
single line of code. The generic format of a for loop
is:

for(initialization, continuation condition, counter)
{
 ...do this stuff
}

The key to understanding how the for loop works is
understanding the three components. Initialization
sets up the loop counter. For example if our counter
stated at zero initialization might look like: i=0. The
loop will continue iterating while the continuation
condition is true. The continuation condition might
be i<100. The counter indicates how will change the
value of the counter variable as the loop executes.
For example, x--; might be our counter.

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 7

Let’s take a look at a fully coded for loop:

<div id=”output”></div>
<script>
 for(var i=0; i < 25; i=i+5)
 {
 document.getElementById(“output”).innerHTML += i + “ “;
 }
</script>

The for loop above will output as follows:

0,5,10,20

Nice and compact, right?

We start by initializing the counter i at 0. The loop
continues iterating while i < 25, and each time we
iterate through the loop we increase the value of i by 5.

Do This: Debugging
<div id=”output”></div>
<script>
 var from = prompt(“Where do you want to start counting?”);
 var stop = parseInt(
				 prompt(“Where do you want to
stop counting?”));

 for(var i = from; i < stop + 1; i++)
 {
 document.getElementById(‘output’).innerHTML += i +
“
”;
 }

</script>

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 8

If you run this code and enter the numbers 10 and 20
it appears to work fine.

But try enter the values 20 an 1. You will find that the
code is only designed to count forwards. Debug the
code so it can count forwards or backwards. Good
luck!

Submit This: Lab Exercise
Section A: Using a loop or loops have the following
patterns output on the web browser. (You MUST use
a loop or loops to produce these. You can’t simply
output the hard coed pattern.)

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 9

Pattern #1

*
**

**
*

Pattern #2

--*-*-*-*-
--*-*-*-*-
--*-*-*-*-
--*-*-*-*-

Section B: Prompt the user for a number of rows
and a number of columns. Using the * output the *
character in the row and column pattern requested
by the user. If the user requests 2 rows and 2
columns you should output:

**
**

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 10

Please save your file in the following format to insure
proper credit:

LastName_Exercise5A.html and LastName_
Exercise5B.html.

Remember every exercise must be submitted in order
for you to earn certification. Once you’ve completed
this exercise, you’re ready to move on to Section 6.

