
JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 1

By Mark Lassoff, Founder Framework Television

Section Two
I hope you enjoyed working your way through
Section One of the course and now have a good
grasp of creating JavaScript programs, editing
them, debugging and executing them in the browser.
Even if you feel shaky at this point, you’re going to
practice these skills over an over again, so, please,
don’t worry!

Section 2 Goals
In this section of the course your goals are:

🔲 Declare a Variable
🔲 Initialize a Variable by Assigning an Initial Value
🔲 Use Integer and Floating Point Variables
🔲 Use String Variables
🔲 �Make your first Calculation using a Variable

Operator

Declaring a Variable
Declaring a variable is just a matter of registering it
with the JavaScript processor. Every variable must
be declared before it can be used. The ES5 version of
JavaScript that we have been using so far uses the
keyword var to declare a variable.

var age;
var name;
var playerScore;

JavaScript for App Development

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 2

Above are examples of three variable declarations.
You should note that when you name your variables,
you want to use names that are descriptive. The idea
is for a variable to document the value the variable
holds.

A couple of rules you should note for naming
variables:

• �Variable names cannot be JavaScript keywords.
• �Variable names can contain alphabets and

numbers.
• �Variable names cannot contain spaces and

special characters, except the underscore (_) and
the dollar ($) sign.

• �Variable names cannot begin with a number.

Initialize a Variable with an
Initial Value
Once a variable is declared, it must be initialized
before use. When you initialize a variable, you’re
storing an initial value in that variable. Here’s an
example of the three variables we declared earlier
being initialized:

<script>
var age;
var name;
var playerScore;

age = 44;
name = “Mark Lassoff”;
playerScore = 0;
</script>

You’ll notice that variables were initialized with
the ‘=’ sign. While by most of us will call that the
“equal sign”, the correct terminology in coding is

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 3

the “assignment operator”. It assigns a value to
a variable. The “proper” way to read age = 44 is
“variable age is assigned the value 44”. (In the real
world, plenty of programmers say “equals”. Correct
them at your own risk!

Combined Declaration and Initialization

Most of the time developers will combine the
declaration process and initialization process into a
single
step. It’s just more convenient.

<script>
var age = 44;
var name = “Mark Lassoff”;
var playerScore = 0;
</script>

Why write six lines of code when you can write three?
Right?

Functionally, there is no difference between
combined declaration and initialization and declaring
and initializing separately.

I’ve purposely left out a discussion of variable scope
at this point. We’ll cover variable scope when it’s a bit
more cogent.

A Note on ES6

We’ll be covering the ES6 standard in greater detail
later on in the course. However I wanted to preview
the relevant ES6 method of declaring a variable. Most
commonly in ES6 you’ll see the keywords let and
const instead of var.

The advantage of the ES6 let is that it allows access
to the variable to be restricted to the nearest block.

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 4

(This is a safety feature preventing an outside
object from manipulating the value of the variable
unintentionally.)

Before ES6 JavaScript really had no ability to deal
with constants. Constants are read-only variables.
Essentially, once a constant is assignment a value,
that value does not change. I would use a constant,
for example, to define the width and height of a
playing field for a game. That’s not going to change
throughout the program execution, so a constant is
appropriate.

To declare a constant in ES6 const is used.

Much hasn’t changed as both ES6 keywords are
used similarly to var. As you would expect, the script
below will output “Audi” and “windows”.

<div id=”output”></div>
<script>
“use strict”

 let car = “Audi”;
 const OS = “windows”;

 document.getElementById(“output”).innerHTML = car +
“
”;
 document.getElementById(“output”).innerHTML += OS;
</script>

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 5

Numerical Variables:
Integers and Floating
Point Numbers
JavaScript variables can hold two types of numerical
values. First, variables can hold integers, which are
whole numbers. Variables can also hold floating
point numbers which are numbers that contain a
decimal point. Both types of numbers are assigned
to variables the same way – with the assignment
operator.

<script>
var age = 44; //Positive Integer
var status = -100; //Negative Integer
var gpa = 3.55; //Float
</script>

Numbers stored in JavaScript variables can be
positive or negative.

Regardless of the type of value stored, the value
stored in a variable is retrieved by naming the
variable in your code. Continuing the above example:

<div id=”output”></div>
<script>
var age = 44; //Positive Integer
var status = -100; //Negative Integer
var gpa = 3.55; //Float
var out = “Age: “ + age;
 out += “
Status: “ + status;
 out += “
Gpa: “ + gpa;
document.getElementById(“output”).innerHTML = out;
</script>

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 6

As we create the string stored in the variable out,
we retrieve each of the values stored in the variables
declared and initialized in the first part of the script.
We retrieve the variable by simply naming it.

Do This: Why Does This Happen?
I’ve made some small alterations to the code below.
Run the code in your browser by copying in to your
text editor and saving it as a .html file. Why do you
think the output appear the way it does? What does
this tell you about double quotes in JavaScript?

<div id=”output”></div>
<script>
var age = 44; //Positive Integer
var status = -100; //Negative Integer
var gpa = 3.55; //Float
var out = “Age: “ + “age”;
 out += “
Status: “ + “status”;
 out += “
Gpa: “ + “gpa”;
document.getElementById(“output”).innerHTML = out;
</script>

A Comment on Comments

You may have noticed that I used the // symbol in
the code. These are comments. They are ignored by
the browser and not processed. They are there for
the developer. It’s a good habit to use comments
to document your code as you go—especially for
anything that’s confusing. Keep in mind you likely
won’t be the only one to see this code. Write your
comments in a way that they are helpful to everyone.

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 7

A Couple of New Operators
You may have noticed a couple of new operators
have entered the scene. We are already familiar with
the assignment operator, and now we’ve got two
more to examine.

If you like operators, you’re in luck. We’ll be learning
more operators in future sections of the course.

“String” Variables
You’ve already discovered string variables. I think
the term string is most easily defined by how the
JavaScript processor sees it: “A series of random
characters.” The characters may mean something
in some written language, but, to the JavaScript
processor it’s nothing more than a meaningless
series of characters.

You declare and retrieve string variables the same
way you do with numerical variables.

<div id=”output”></div>
<script>
 var message = “The best bands on the planet:
”;
 message += “Journey
”;
 message += “Led Zeppelin
”;
 message += “The Cure
”;

Operator Explanation

+ Concatenation operator. Designed to allow us to create Strings out
of smaller strings. For example “Neil” + “ “ + “Diamond”
results in “Neil Diamond”

+= Add then assign. This is a variant of the assignment operator. The
value to the right of operator is added to what is already stored in
the variable. (I like to think of this as an “Append” operation)

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 8

 message += “Cheap Trick
”;
 message += “U2”;
 document.getElementById(‘output’).innerHTML = message;
</script>

Nothing really new in this code block. Run the code
and you’ll see the obvious result.

Do This: Output Your Own List of
Favorite Bands with Strings
Similar to how I created the list of bands before,
create your own list of favorite bands or artists.
One wrinkle – Create your list in the CSV (Comma
separated value) format. My list would appear like
this as a CSV:

Journey, Led Zeppelin, The Cure, Cheap Trick, U2

Make Your First
Calculation using a
Arithmetic Operator
This is a bit of a preview as we’ll get in to the serious
arithmetic soon. Before I described the plus sign as
the concatenation operator. And it is.

Except when it’s not.

The ‘+’ is an overloaded operator in JavaScript, which
means it has more than one job. In addition to gluing
strings together as the concatenation operator, ‘+’
does addition. For example:

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 9

<script>
 age = 7;
 age = age + 10;

 alert(“In 10 years you will be “ + age + “ years old.”);
</script>

If you look at the second line of the script examine
what’s to the right of the assignment operator. (The
right side of the assignment operator is always
evaluated before assignment occurs.) Variable
age, which has an initial value of 7, has 10 added
and becomes 17. The value 17 is then reassigned
to age. This is an example of the ‘+’ being used for
arithmetic, not concateantion.

Do This: Debugging
This code has several errors. See if you can debug
it and get it working as it should. When working
correctly it should display a story, inserting a nouns,
adjectives and verbs as indicated. As is true in the
real world, these errors are not always apparent and
easy to spot. Good luck.

<html>
<head>
`<title>Debug #2</title>
</head>
<body>
 <div id=”output”></div>
 <script>
 var location = prompt(“In which city or town do you live?”);
 var age = prompt(“How old are you?”);
 var pets = prompt(“Do you have any pets?”);
 var food = prompt(“What is your favorite food?”);

 var out = “This is my friend “ + name;

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 10

 var out += name + “ lives in “ + location;
 var out += name + “ is “ + age “ years old”;
 var out += name + “ likes to eat +” food;

 document.getElementById(‘out’).innerHTML(out);
 </script>
</body>
</html>

Submit This: Lab Exercise
Starting with the code below:

<!DOCTYPE html>
<html>
<head>
 <title>Lab #2</title>
</head>
<body>
 <div id=”out”></div>
 <script>
 name1 = “Tom”;
 name2 = “Bob”;
 name3 = “Mary”;
 name4 = “Caitlyn”;
 name5 = “Red”;
 name6 = “Douglas”;
 name7 = “Judy”;
 name8 = “Susan”;

 </script>
</body>
</html>

JAVASCRIPT FOR APPLICATION DEVELOPMENT	 PAGE 11

1.	 Prompt the user for a list separator. (For example
comma, space, the pipe symbol | , ampersand, or
any other character can be used as a separator).

2.	 Print out the list using the separator the user
input between each name. For example: Tom |
Bob | Mary | Caitlyn | Red | Douglas | Judy | Susan .

3.	 Create a brand new program in a new file that
prompts the user for a number. Print out the
number. Add 10 to the number and print again.
Add 20 and print again. Add 50 and print a fourth
time. Finally add 1568 and print a final time.

(If you have trouble read this article and see if it’s
helpful: https://www.w3schools.com/jsref/jsref_
parseint.asp)

