
JAVASCRIPT FOR APPLICATION DEVELOPMENT PAGE 1

By Mark Lassoff, Founder Framework Television

Section Eight
Section 8 Goals
In this section of the course your goals are:

🔲 Understand Variable Scope
🔲 Use the let Statement to Declare Variables
🔲 Distinguish let from var
🔲 Create a Constant with const
🔲 Understand Scope as Related to Constants
🔲 Declare a Constant Object
🔲 Declare a Constant Array

Watch This: Section 8 Video
As always your course videos are available on
YouTube, Roku and other locations. However, only
those officially enrolled have access to this course
guide, are able to submit assignments, work with the
instructor, and get this guide.

Watch this section video at: https://www.youtube.
com/watch?v=Co4KF1CrSfE

Variable Scope
Variable Scope determines where variables are
visible and accessible as your code executes.

Limiting scope is usually a good idea to prevent
accidental collisions between variables with the

JavaScript for App Development

JAVASCRIPT FOR APPLICATION DEVELOPMENT PAGE 2

same names. For example, let’s say you used code
from a game library. That game library has a variable
called playerScore and your own code has a
variable with the same name.

Can you imagine what would happen if the code in
the library and your code were both manipulating
the same version of playerScore? It wouldn’t work
well.

However, assuming variables are properly scoped,
this won’t happen and each variable will only be
accessible in its own relevant domain.

Examine the code block below.

<script>
 //Global Variables, accessible everywhere
 var x = 0;
 var name = “Mark”;

 function myFunction(){
 //Local Variables only accessible within the function
 var z = 25;
 var exxes = 12;

 //Local Version of x is different from Global x
 //This is only accessible within the function
 var x = 19;
 }

<script>

Fundamentally, there are two variable scopes when
you declare variables with var. Variables declared
outside a function are global and can be accessed
from anywhere within your Javascript. Variables
declared inside a function are local and can be
accessed only from inside the function.

JAVASCRIPT FOR APPLICATION DEVELOPMENT PAGE 3

If you declare variables without the benefit of
the var statement (which for reasons beyond
explanation you CAN do in JavaScript, these rules
don’t apply. Promise me you won’t try this.

If you declare the same variable within a function and
globally you are creating two distinct variables. This
is obviously not a best practice.

let
ES6 has introduced the keyword let. It is now the
preferred way to declare your variables.

You may be wondering, why we didn’t start with
let. The reason is that there is a couple decades
worth of Javascript out there that predates ES6.
You have to know the old and understand the new.
Likely your first jobs in interview will be maintaining
code others wrote—not writing your own code from
scratch.

Declaring variables with let is no different than
declaring variables with var.

<script>
 let name = “Mark Lassoff”;
 let favoriteBand = “Journey”;
 let age = 44.5;
</script>

There are some differences in how the JavaScript
processor handles your variable behind the scenes.

First, when you declare your variable with let it is
not part of the Window object. (We haven’t covered
the Window object yet, but consider it the object
that maintains state and status of the browser and
your app). Technically you could access variables

JAVASCRIPT FOR APPLICATION DEVELOPMENT PAGE 4

declared with var through the window object like
this: window.yourVariable.

The second major difference between var and let,
is scope. We’ll talk about that next.

let Versus var
Variables declared with let are block scoped. What
this means, is that the variables are accessible within
the block in which they are declared. Examine the
following code:

<script>
let y = 100;
 {
 let x = 15;

 //Can reference x here
 alert(x);

 //Can reference y here
 alert(y);
 }
//x is undefined here. It was declared in the block
alert(x);
</script>

In the example above, y is globally scoped so it’s
accessible everywhere. x, however, is block scoped.
References made to x outside the block in which its
declared will be null.

JAVASCRIPT FOR APPLICATION DEVELOPMENT PAGE 5

Creating Constants with
const
Every programming language has the ability to create
Constants. Now with ES6, Javascript has joined the
rest of the programming world!

Constants are essentially variables whose value
does not change throughout the life of your program
execution. They used to store any type of value that
you’ll need to reference but won’t change. They are
declared with the const keyword.

<script>
 const APPLES = 12;
 alert(APPLES); //12

 APPLES = APPLES + 2; //Not allowed.. Value is constant
 APPLES = 2; //Not allowed.
</script>

By convention, the names of constants are typed in
all caps.

Constant Scope
Constants are scoped the same as variables declared
with let. Constants declared with const may be
block scoped or globally scoped.

While there is no hard and fast rule, if I declare
a constant, I’ll do it in the global scope. This is
a matter of design as I’ll want the constant to
substitute for a value in several locations within the
code.

JAVASCRIPT FOR APPLICATION DEVELOPMENT PAGE 6

Do This: Discuss Constants
In the class Slack discussion, give a few examples
of values you might declare as constants within a
program and why. Be creative. For example: I would
declare the size of a game board in a constant, so this
way if I wanted to change the size of the game board,
I’d only have to do it one place.

const Objects
While of limited utility, objects can be declared with
const in ES6 JavaScript. You might think that these
objects would then be immutable; however, that’s not
the case. The reality is a bit confusing.

const wine = {type:”Chardonnay”, brand:”McGivneys”,
color:”white”,
 price: 9.99};

// In a const Object you can modify a property
wine.price = 10.99;

// In a const Object you can add a property
wine.starRating = 5;

Kind of bizarre, right? (Keep in mind I didn’t create
Javascript, I just teach it!)

The one thing you cannot do in this case is redefine
wine in this script. That would result in an error.

As I mentioned, I find const objects to be of limited
utility.

JAVASCRIPT FOR APPLICATION DEVELOPMENT PAGE 7

const Arrays
Like const objects, Arrays can be declared as
constants. Arrays declared as constants cannot be
redeclared, but the array itself is mutable.

const coffee = [“Starbucks”, “Peete’s”, “Dunkin’ Donuts”,
“Caribou Coffee”, “Gloria Jeans”, “McDonalds”];

//We can modify an array member
coffee[2] = “Dunkin’”;

//We can add to the array
coffee.push(“Coffee Beenery”);

In practice, you’ll rarely run into Arrays or Objects
declared as constants, but, now you know how to
handle them if you do!

JAVASCRIPT FOR APPLICATION DEVELOPMENT PAGE 8

Do This: Debugging
This code isn’t working. There’s a problem with
scope. And that’s not the only problem!

<div id=”out”></div>
<script>

 init();

 function init()
 {
 let factor = 3;
 const maxValue = 100;
 const minValue = 0;

 for(let x = maxValue; x > minValue; x--;)
 {
 if(x % factor == 0)
 {
 let output = “”;
 output += x;
 output += “
”;
 }
 }
 }

 document.getElementById(“out”).innerHTML = “Factors of “ +
factor
 + “:
 “;
 document.getElementById(“out”).innerHTML += output;

</script>

JAVASCRIPT FOR APPLICATION DEVELOPMENT PAGE 9

Debug the code and correct the errors, so we get
output that looks like the screenshot below.

JAVASCRIPT FOR APPLICATION DEVELOPMENT PAGE 10

Submit This: Lab Exercise
We’re going to redo the calculator exercise from
earlier in the course, but this time, please don’t
use var to declare your variables. Use let and, if
appropriate, const. Here are the instructions:

Create a calculator. You will prompt the user three
times. For the first prompt, ask the user for the first
number to be calculated. For the second prompt, ask
the user for the second number to be calculated. On
the third prompt ask for an operation (+ , - , * , / , %).

Once the user entries to the prompts are stored,
perform the operation requested and output the
entire equation. For example if the user enters 4, 5
and + output “9 + 4 = 13”

One additional caveat: The results of the calculation
must be shown using a function called showResult().
Lab submissions not using this function will be
returned for correction.

Good luck!

Please save your file in the following format to
ensure proper credit:

LastName_Exercise8.

Remember every exercise must be submitted in order
for you to earn certification.

